home *** CD-ROM | disk | FTP | other *** search
-
-
-
- CCCCTTTTRRRREEEEVVVVCCCC((((3333SSSS)))) CCCCTTTTRRRREEEEVVVVCCCC((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- CTREVC - compute some or all of the right and/or left eigenvectors of a
- complex upper triangular matrix T
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE CTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR,
- MM, M, WORK, RWORK, INFO )
-
- CHARACTER HOWMNY, SIDE
-
- INTEGER INFO, LDT, LDVL, LDVR, M, MM, N
-
- LOGICAL SELECT( * )
-
- REAL RWORK( * )
-
- COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), WORK( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- CTREVC computes some or all of the right and/or left eigenvectors of a
- complex upper triangular matrix T. The right eigenvector x and the left
- eigenvector y of T corresponding to an eigenvalue w are defined by:
-
- T*x = w*x, y'*T = w*y'
-
- where y' denotes the conjugate transpose of the vector y.
-
- If all eigenvectors are requested, the routine may either return the
- matrices X and/or Y of right or left eigenvectors of T, or the products
- Q*X and/or Q*Y, where Q is an input unitary
- matrix. If T was obtained from the Schur factorization of an original
- matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of right or left
- eigenvectors of A.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- SIDE (input) CHARACTER*1
- = 'R': compute right eigenvectors only;
- = 'L': compute left eigenvectors only;
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- CCCCTTTTRRRREEEEVVVVCCCC((((3333SSSS)))) CCCCTTTTRRRREEEEVVVVCCCC((((3333SSSS))))
-
-
-
- = 'B': compute both right and left eigenvectors.
-
- HOWMNY (input) CHARACTER*1
- = 'A': compute all right and/or left eigenvectors;
- = 'B': compute all right and/or left eigenvectors, and
- backtransform them using the input matrices supplied in VR and/or
- VL; = 'S': compute selected right and/or left eigenvectors,
- specified by the logical array SELECT.
-
- SELECT (input) LOGICAL array, dimension (N)
- If HOWMNY = 'S', SELECT specifies the eigenvectors to be
- computed. If HOWMNY = 'A' or 'B', SELECT is not referenced. To
- select the eigenvector corresponding to the j-th eigenvalue,
- SELECT(j) must be set to .TRUE..
-
- N (input) INTEGER
- The order of the matrix T. N >= 0.
-
- T (input/output) COMPLEX array, dimension (LDT,N)
- The upper triangular matrix T. T is modified, but restored on
- exit.
-
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= max(1,N).
-
- VL (input/output) COMPLEX array, dimension (LDVL,MM)
- On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain
- an N-by-N matrix Q (usually the unitary matrix Q of Schur vectors
- returned by CHSEQR). On exit, if SIDE = 'L' or 'B', VL contains:
- if HOWMNY = 'A', the matrix Y of left eigenvectors of T; VL is
- lower triangular. The i-th column VL(i) of VL is the eigenvector
- corresponding to T(i,i). if HOWMNY = 'B', the matrix Q*Y; if
- HOWMNY = 'S', the left eigenvectors of T specified by SELECT,
- stored consecutively in the columns of VL, in the same order as
- their eigenvalues. If SIDE = 'R', VL is not referenced.
-
- LDVL (input) INTEGER
- The leading dimension of the array VL. LDVL >= max(1,N) if SIDE
- = 'L' or 'B'; LDVL >= 1 otherwise.
-
- VR (input/output) COMPLEX array, dimension (LDVR,MM)
- On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain
- an N-by-N matrix Q (usually the unitary matrix Q of Schur vectors
- returned by CHSEQR). On exit, if SIDE = 'R' or 'B', VR contains:
- if HOWMNY = 'A', the matrix X of right eigenvectors of T; VR is
- upper triangular. The i-th column VR(i) of VR is the eigenvector
- corresponding to T(i,i). if HOWMNY = 'B', the matrix Q*X; if
- HOWMNY = 'S', the right eigenvectors of T specified by SELECT,
- stored consecutively in the columns of VR, in the same order as
- their eigenvalues. If SIDE = 'L', VR is not referenced.
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- CCCCTTTTRRRREEEEVVVVCCCC((((3333SSSS)))) CCCCTTTTRRRREEEEVVVVCCCC((((3333SSSS))))
-
-
-
- LDVR (input) INTEGER
- The leading dimension of the array VR. LDVR >= max(1,N) if SIDE
- = 'R' or 'B'; LDVR >= 1 otherwise.
-
- MM (input) INTEGER
- The number of columns in the arrays VL and/or VR. MM >= M.
-
- M (output) INTEGER
- The number of columns in the arrays VL and/or VR actually used to
- store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N.
- Each selected eigenvector occupies one column.
-
- WORK (workspace) COMPLEX array, dimension (2*N)
-
- RWORK (workspace) REAL array, dimension (N)
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- The algorithm used in this program is basically backward (forward)
- substitution, with scaling to make the the code robust against possible
- overflow.
-
- Each eigenvector is normalized so that the element of largest magnitude
- has magnitude 1; here the magnitude of a complex number (x,y) is taken to
- be |x| + |y|.
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-